The Taylor series method for ordinary differential equations

Karsten Ahnert1,2
Mario Mulansky2

1 Ambrosys GmbH, Potsdam
2 Institut für Physik und Astronomie, Universität Potsdam

December, 8, 2011
Outline

1. Solving ODEs
2. The method
3. Implementation
4. Conclusion
Find a numerical solution of the initial value problem for an ODE

\[\dot{x} = f(x, t) , \quad x(t = 0) = x_0 \]

Example: Explicit Euler

\[x(t + \Delta t) = x(t) + \Delta t f(x(t), t) + O(\Delta t^2) \]

General scheme of order \(s \)

\[x(t) \mapsto x(t + \Delta t) \quad , \text{or} \]

\[x(t + \Delta t) = F_t x(t) + O(\Delta t^{s+1}) \]
Numerical methods – Overview

Methods:
- Steppers: \(x(t) \mapsto x(t + \Delta t) \)
- Methods with embedded error estimation
- Adaptive step size control
- Dense output

Examples:
- Explicit Runge Kutta methods
- Implicit methods for stiff systems
- Symplectic methods for Hamiltonian systems
- Multistep methods
- **Taylor series method**
Software for ordinary differential equations

- GNU Scientific library – gsl, C
- Numerical recipes, C and C++
- www.odeint.com, C++
- odeint, Python
- apache.common.math, Java
Taylor series method

\[\dot{x} = f(x) \]

Taylor series of the solution

\[x(t + \Delta t) = x(t) + \Delta t \dot{x}(t) + \frac{\Delta t^2}{2!} \ddot{x}(t) + \frac{\Delta t^3}{3!} x^{(3)}(t) + \ldots \]

- Auto Differentiation to calculate \(\dot{x}(t), \ddot{x}(t), x^{(3)}(t), \ldots \)
- Applications: Problems with high accuracy
 - astrophysical application, chaotic dynamical systems
- Arbitrary precision types
- Interval arithmetics
Most software packages use generators

- **ATSMCC, ATOMFT – Fortran generator**

- **Taylor – C Generator**

- **TIDES – arbitrary precision, Mathematica generator**

 Rodríguez, M. et. al, TIDES: A free software based on the Taylor series method, 2011

Operator overloading

- Adol-C
- cppAD

Expression templates

- Taylor
1 Solving ODEs

2 The method

3 Implementation

4 Conclusion
Taylor series of the ODE

\[x(t + \Delta t) = x(t) + \Delta t \dot{x}(t) + \frac{\Delta t^2}{2!} \ddot{x}(t) + \frac{\Delta t^3}{3!} x^{(3)}(t) + \ldots \]

Introduce the reduced derivatives \(X_i \)

\[F_i = \frac{1}{i!} \left(f(x(t)) \right)^{(i)} \quad , \quad X_i = \frac{1}{i!} x^{(i)}(t) \quad , \quad X_{i+1} = \frac{1}{i+1} F_i \]

Taylor series

\[x(t + \Delta t) = X_0 + \Delta t X_1 + \Delta t^2 X_2 + \Delta t^3 X_3 + \ldots \]
Example: Lorenz system

\[
\begin{align*}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= Rx - y - xz \\
\dot{z} &= -bz + xy
\end{align*}
\]
Recursive determination of the Taylor coefficients

1. Initialize $X_0 = x(t)$
2. Calculate $X_1 = F_0(X_0)$
3. Calculate $X_2 = \frac{1}{2}F_1(X_0, X_1)$
4. Calculate $X_3 = \frac{1}{3}F_2(X_0, X_1, X_2)$

...

Calculate $X_s = \frac{1}{s}F_{s-1}(X_0, X_1, \ldots, X_{s-1})$

Finally $x(t + \Delta t) = X_0 + \Delta tX_1 + \Delta t^2X_2 + \ldots$
Recursive determination of the Taylor coefficients

1. Initialize $X_0 = x(t)$
2. Calculate $X_1 = F_0(X_0)$
3. Calculate $X_2 = \frac{1}{2}F_1(X_0, X_1)$
4. Calculate $X_3 = \frac{1}{3}F_2(X_0, X_1, X_2)$

\ldots

Calculate $X_s = \frac{1}{s}F_{s-1}(X_0, X_1, \ldots, X_{s-1})$

Finally $x(t + \Delta t) = X_0 + \Delta tX_1 + \Delta t^2X_2 + \ldots$

In every iteration the expression tree is evaluated!
Algebraic operations

At every iteration the nodes in the expression tree have to be evaluated

Formulas for iteration i:

- Constants: $C_i = c \delta_{i,0}$
- Dependend variable x: X_i
- Summation $s = l + r$: $S_i = L_i + R_i$
- Multiplication $m = l \times r$: $M_i = \sum_{j=0}^{i} L_j R_{i-j}$
- Division $d = l/r$: $D_i = 1/R_0 (L_i - \sum_{j=0}^{i-1} D_j R_{i-j})$
- Formulas for special functions exist: exp, log, cos, sin, ...
At every iteration the nodes in the expression tree have to be evaluated. Formulas for iteration i:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constants</td>
<td>$C_i = c\delta_{i,0}$</td>
</tr>
<tr>
<td>Dependend variable</td>
<td>X_i</td>
</tr>
<tr>
<td>Summation $s = l + r$</td>
<td>$S_i = L_i + R_i$</td>
</tr>
<tr>
<td>Multiplication $m = l \times r$</td>
<td>$M_i = \sum_{j=0}^{i} L_j R_{i-j}$</td>
</tr>
<tr>
<td>Division $d = l/r$</td>
<td>$D_i = \frac{1}{R_0}(L_i - \sum_{j=0}^{i-1} D_j R_{i-j})$</td>
</tr>
</tbody>
</table>

Formulas for special functions exist.
Step size control

- Error estimate: $err = X_s$
- $\nu = \| \frac{err_k}{\epsilon_{rel} + \epsilon_{abs} |x_k|} \|$
- $\Delta t = \nu^{-1/s}$
- No acceptance or rejection step is required

Dense output is trivially present

- $x(t + \tau) = X_0 + \tau X_1 + \tau^2 X_2 + \tau^3 X_3 + \ldots$, $0 < \tau < \Delta t$

Methods for order estimation exist
1 Solving ODEs

2 The method

3 Implementation

4 Conclusion
Taylor

Download

https://github.com/headmyshoulder/taylor
Implementation

Taylor

Download

- https://github.com/headmyshoulder/taylor

Taylor will be integrated into **odeint**

- Implements some odeint - stepper
Taylor

Download

- https://github.com/headmyshoulder/taylor

Taylor will be integrated into odeint

- Implements some odeint - stepper

Modern C++

- Heavy use of the C++ template systems
- Expression templates for expression trees
- Template meta-programming
Here, C++ templates will be used to create the expression tree – **Expression Templates**

Template Metaprogramming to evaluate the expression templates

It basically means using the template engine to generate a program from which the compiler creates then the binary

C++ compilers always use the template engine (no additional compile step required)
Here, C++ templates will be used to create the expression tree – **Expression Templates**

Template Metaprogramming to evaluate the expression templates

It basically means using the template engine to generate a program from which the compiler creates then the binary

C++ compilers always use the template engine (no additional compile step required)

Template engine and templates are a functional programming language

Templates form a Turing-complete programming language

→ You can solve any problem with the template engine
template< class L , class R > struct binary_expression
{
 binary_expression(string name , L l , R r)

 L m_l;
 R m_r;
};

struct terminal_expression
{
 terminal_expression(string name) ...
};

const terminal_expression arg1("arg1") , arg2("arg2");

template< class L , class R >
binary_expression< L , R > operator+(L l , R r)
{
 return binary_expression< L , R >("Plus" , l , r);
}

...

template< class Expr > void print(Expr expr) { ... }

print(arg1);
print(arg1 + (arg2 + arg1 - arg2));
Expression templates

- Expression templates are constructed during compile-time
- Strong optimization – no performance loss
- Lazyness
- Applications: Linear algebra systems, AD, (E)DSL

Example MTL4

```cpp
mtl4::dense_matrix< double > m1( n, n ), m2( n, n ), m3( n, n );

    // do something useful with m1, m2, m3

mtl4::dense_matrix< double > result = m1 + 5.0 * m2 + 0.5 * m3 ;
```

Last line creates an expression template which is evaluated to

```cpp
for( int i=0 ; i<n ; ++i )
    for( int j=0 ; j<n ; ++j )
        result( i, j ) = m1( i, j ) + 5.0 * m2( i, j ) + 0.5 * m3( i, j );
```
First example – Lorenz system

taylor_direct_fixed_order< 25 , 3 > stepper;
state_type x = {{ 10.0 , 10.0 , 10.0 }} ;
double t = 0.0;
double dt = 1.0;
while(t < 50000.0)
{
 stepper.try_step(
 fusion::make_vector(
 sigma * (arg2 - arg1) ,
 R * arg1 - arg2 - arg1 * arg3 ,
 arg1 * arg2 - b * arg3
), x , t , dt);
 cout << t << "\t" << x << "\t" << dt << endl;
}

- ODE is a compile time sequence of expression templates
- The expression template is defined with boost::proto
- No preprocessing step is necessary!
Expression templates and ODEs

Boost.Proto (C++ library)
- Creation, manipulation and evaluation of the syntax tree
- Grammar = Allowed expression + (optional) Transformation
Expression templates and ODEs

Boost.Proto (C++ library)
- Creation, manipulation and evaluation of the syntax tree
- Grammar = Allowed expression + (optional) Transformation

Taylor library uses Proto as front end:
- The ODE is a set of Proto expression templates
- ODE is transformed into a custom expression template

```cpp
struct tree_generator :
    proto::or_<
        variable_generator< proto::_ > ,
        constant_generator ,
        plus_generator< tree_generator > ,
        minus_generator< tree_generator > ,
        multiplies_generator< tree_generator > ,
        divides_generator< tree_generator > ,
        unary_generator< tree_generator >
    > { };```
Expression templates and ODEs

- Evaluation of the custom template – iteration several times of the template
- The nodes implement the rules for the algebraic expressions
- Optimization of the expression tree

Example: The plus node

```cpp
template< class Left , class Right >
struct plus_node : binary_node< Left , Right >
{
 plus_node(const Left &left , const Right &right) :
 binary_node< Left , Right >(left , right) { }

 template< class State , class Derivs >
 Value operator()(const State &x , const Derivs &derivs , size_t which)
 {
 return m_left(x , derivs , which) + m_right(x , derivs , which);
 }
};
```
Interface for easy implementation of arbitrary ODEs exist

```cpp
taylor_direct_fixed_order< 25 , 3 > stepper;
stepper.try_step(sys , x , t , dt);
```

**sys** represents the ODE, Example:

```cpp
fusion::make_vector(
 sigma * (arg2 - arg1) ,
 R * arg1 - arg2 - arg1 * arg3 ,
 arg1 * arg2 - b * arg3)
```

**x** is the state of the ODE is in-place transformed

**t, dt** are the time and the step size
Performance comparison against full Fortran code

- The Lorenz system as test system
- Benchmarking: a Fortran code with a non-AD implementation
- Both codes have the same performance, run-time deviation is less 20%
- Exact result depends strongly on the used compiler (gcc 4.5, gcc 4.6, gfortran, ...)
Comparison against other methods

- Taylor has good performance for high precision
- Outperforms the classical Runge-Kutta steppers
Conclusion

Taylor – A C++ library for the Taylor series method of ordinary differential equations

Uses expression templates as basis for the automatic differentiation

Fast

Uses modern C++ methods

Template Metaprogramming is the main programming technique
The library is not complete

- Implementation of special functions
- Implementation of stencils for lattice equations
- Implementation of variable order
- Implementation of dense output functionality
- Portability layer for arbitrary precision types
- Integration into odeint
Resources

Download and development
https://www.github.com/headmyshoulder/taylor

Odeint
odeint.com

Contributions and feedback
are highly welcome